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Nonlinear irreversible processes between states which are not local equilib- 
rium states are investigated by methods of the kinetic theory. The pheno- 
menological equations for the second-order fluxes in a multicomponent 
mixture are derived, and relations between some of the second-order 
phenomenological coefficients are established. It is shown that new inde- 
pendent forces appear in the second-order equation, namely the gradients 
of the chemical potentials. Expressions for the entropy, entropy flux, and 
entropy source are evaluated. These expressions are related to the pheno- 
menological equations and coefficients, e.g., all the second-order contri- 
butions of the forces in the equations for the fluxes can be obtained by 
differentiation of the expression for the second-order entropy source with 
respect to the coupled forces. 
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1. I N T R O D U C T I O N  

No general theory is available as yet for nonlinear irreversible processes. The 
existing theory of irreversible thermodynamic treats linear processes between 
states of local equilibrium. (4~ Several attempts were made to extend the 
theory to nonlinear processes for states not far from equilibrium, i.e., with 
the assumption of local equilibrium. (6'7~ Phenomenological relations can 
also be obtained by methods of the kinetic theory. The results obtained by 
these methods for processes between local equilibrium states are equivalent 
to those of the macroscopic theory of irreversible thermodynamics. (4~ 
DeGroot and Mazur ~4~ implied that the description of second-order effects 
by the kinetic theory does not agree with any extension of the existing macro- 
scopic theory. The reason for this discrepancy is that the kinetic theory is not 
restricted to local equilibrium states. 

Chapman and Cowling (2~ describe the mathematical analysis of the 
kinetic theory and the solution of the Boltzmann equation by Enskog's 
method of expanding the distribution function in series around the equilibrium 
state. The method is applicable only to "normal" states. Chapman and Cow- 
ling (2~ fully describe the first-order solution for the distribution function and 
the first-order phenomenological equations. Burnett m evaluated the rather 
complicated second-order solution for the distribution function. Chapman 
and Cowling (2~ developed a method for deriving the second-order pheno- 
menological equations for a one-component gas where it is not necessary to 
use the cumbersome solution for the second-order distribution but only the 
equation for it. In a later work (3~ they extended the method to calculate the 
diffusion flux in a two-component mixture. 

The purpose of the present work is to investigate, using kinetic theory 
considerations, nonlinear processes between states which are not necessarily 
in local equilibrium. The discussion is restricted, however, to the class of 
processes between so-called normal states, namely states which are governed 
by the Boltzmann equation. In the present work, the results of Chapman and 
Cowling <3~ are modified and extended. The phenomenological equations for 
a multicomponent mixture of simple gases are derived. (The term simple gas 
is used for a gas where all modes of energy other than the translational 
energy may be neglected.) The second-order entropy, entropy source, and 
entropy flux are evaluated for such a mixture and their relation to the 
thermodynamic fluxes and forces is established. It is shown that all the terms 
appearing in the phenomenological equations for the fluxes can be obtained 
by differentiating the entropy production rate with respect to the coupled 
forces. 

The term "phenomenological" equations is used here for the equations 
relating the macroscopic average values of the thermodynamic fluxes to the 
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thermodynamic forces. This term thus has a similar meaning to " t ranspor t"  
or "consti tutive" equations. 

2. D E F I N I T I O N S  A N D  C O N S E R V A T I O N  L A W S  

A brief summary of the definitions and the conservation laws that are 
used in the present work is given in this section. 

The microscopic state of  a chemically nonreacting multicomponent 
mixture is specified by the number of molecules of each molecular species i 
which lie in the phase space volume element dr du, at time t, namely the 
distribution functionf~(r, u; t) dr du=. The change of the distribution function 
which describes the behavior of the system is given by the Boltzmann 
equation 

~ ~ - ~  
- u,-~r -- F~.~uu~ + ~.  C(f~,fj), i =  1 ..... N (1) 

at 

where F, is an extenal force (per unit mass) exerted on the component i and 
C( f , f j )  are the collision integrals given by 

C(f~, fj) = [fi(r, ui , t)fj(r, uj ; t) - fi(r, ui; t)f~.(r, u~; t)] 

�9 lu~,l W(k~jlkgj; lu~j[) dk'j duj (2) 

where the prime denotes values after the collision, lu~j] = [u~ - uj] i s the 
absolute value of the relative molecular velocity, k~ s is a unit vector directed 

- ! . / 

along the relative velocity, and lu~jl W(k~j]kij, [u~j)dk~j is the conditional 
probability per unit time that the unit vector will be in the interval between 
k'j and k~j + dk~'j after the collision if before the collision it was in the 
direction k~ 3. 

The number density n~ and the mass density #~ of a component i are 
defined by 

n~ = ff~ du~; p~=m~n~=rn~ff~du~ (3) 

where m~ is the molecular mass of component i. 
The translational kinetic energy of the thermal motion per unit volume 

p~e~ is given by 

p~e~= �89 j- (u~ - v)2]; du~= �89 J U~2f dui (4) 

where v is the barycentric velocity (or the velocity of the local center of mass) 
and is given by 

v =  ( ~  p~)-i  ~ m ~  ff~u~ du~ (5) 

and U~ = u~ - v is the peculiar velocity. 
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The properties of  the whole system are obtained by summing over all the 
components. Thus the number, mass, and energy densities are given by 

n = ~ n~ (6a) 
t 

(6b) 

(6c) 

p = ~ ,  p~ = ~ m~n~ 

e =  p'e' = �89 f (u' - 

The fluxes are defined as the sums of the molecular fluxes; thus the diffusion 
flux J~ is 

J~ = ms j f ( u ~  - v)du~ (7) 

The thermal energy flux (which for a simple gas is equivalent to the heat 
flux) is 

J q = � 8 9  ff(u - v)2(u,- v) du~ (8) 

And the pressure tensor P is given by the momentum flux 

P = ~ m, f f (u ,  - v)(u, - v) du~ (9) 

where (u~ - v)(u~ - v) denotes a dyadic product. 
The conservation laws can be written in the following way. The con- 

tinuity equation: 

dnddt  = - n~ div v - div(n~Ui), dp/dt  = - div v (10) 

where U~ = f U~f~ du~ is the average of  the vector U~. The momentum equa- 
tion: 

p dv/dt  = - D i v  P + ~ p~F, (11) 
i 

The energy equation: 

p de/dt  = - d i v  Jq - P: Grad v + ~ J~.F~ (12) 
i 

The temperature T is defined by 

3 n K T  = pe (13) 

where Kis  the Boltzmann constant. The molecular and the average enthalpies 
are given by 

h~ = -~KT/m,; ph = ~ p,h, = S n K T  (14) 
[ 
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The entropy and the entropy flux are defined by 

-K~ ff~(lnf,- 1)du~ (15) p s =  

J~ = - K ~ .  f ( u ~ -  v ) f ( l n f  - 1) du~ (16) 

The balance equation for the entropy is 

(O/~t)(ps) = -div(psv + Js)  + ~ (17) 

By introducing the time derivative from the Boltzmann equation (1), the rate 
of entropy production (or entropy source) (r is found to be 

,~ = -K  ~ ~ f c(f,,f31ns du, >~ (18) 

3. THE SOLUTION OF B O L T Z M A N N ' S  EQUATION BY 
ENSKOG'S M E T H O D  

Enskog's method for the solution of Boltzmann's equation is used to 
extend the results of Chapman and Cowling (2,3) and deGroot  and Mazur (~) 
to the description of second-order effects in multicomponent systems. 

The distribution function is expanded in series 

f = f(o) + f(1) + f(2) + ... =fi(o)(1 + q~i(1) + q~i(2) + ...) (19) 

where the orders of magnitudes are determined according to the effect of the 
thermodynamic forces. 

The zeroth orderf~ (~ is related to the states where no forces exist locally, 
and, therefore, to local equilibrium states. 

By using Eq. (19), we can put the fluxes, pressure tensor, and rate of 
entropy production into the following forms: 

j = j (0)  + j(1)  + j(2)  + . . . .  j (1)  + j(2)  + ... ( 2 0 )  

p = p(o> + p(1) + p(2) + . . . .  pU + VV 1) + 1-[ (2) +.- .  (21) 

= ~(0) + ~(1) + ~(2) + . . . .  ~(1) + ~(2) + ... (22) 

where the zeroth-order terms of the fluxes and the entropy source vanish and 
the equilibrium pressure is hydrostatic. 

The solution forf~ (~ is given by the Maxwell distribution: 

rio) = n~(rn~/2~KT)3/2 e x p ( -  m~U~2/2KT) (23) 
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The solution for the first-order distribution function is given by (~) 

grad T N- 
r = -A,U, .  ~- ~ D,~U,.Rk - B,U,~ E, i = 1, 2 .... , N  (24) 

/ c = l  

where E is the velocity-gradient tensor: 

E - Grad v (25) 

U~~ denotes the traceless tensor produced by the appropriate dyadic 
product; Rk denotes the diffusion forces: 

R~ - {grad(ff~ - ffJ}T - (Fk -- Fu) (26) 

where/~k is the chemical potential of component k and the index Tdenotes that 
the temperature is kept constant while carrying out the differentiation, The 
functions A~, D~k, and B~ depend on the absolute values U~ of the velocities 
and on the local properties: temperature and composition. The solutions 
for these functions can be expanded in series of the Sonine polynomials 
S~). (2) The coefficients of these expansions depend on the molecular character 
of the system and the intermolecular forces. 

It is sometimes useful to write the first-order solution (24) in the follow- 
ing form: 

N - 1  

f a )  = f(0)r = A,U~.grad T + ~ /3~U~.Rk + ~U~~ : E (27) 
h:=J- 

where 

-,t~ = - (1/T)f(~ D~k = --f(~ ~ = -f(~ (28) 

The equation for r is obtained by grouping the second-order terms in the 
Boltzmann equation: 

alA(0) a0f(1) af(1) ~..afi (~) 
Y~ = a------i--- + ~ + u~'---b~r + -~ Ou~ + ~ C(f{~)'fr (29) 

where Y~ is defined as follows 

r ,  = -  - (30) 
f 

and where azf(~)/at contains all the terms of the order l which appear after 
the introduction of the conservation equations into the expression of 
af~(~)/~t. For example, the first term in Eq. (29) is calculated by 

~ l f  (~ = f(o) ~1 l n f  (~ _ f(0) al ( 3 m~U~ 2] 
at " at ~ l n n ~ -  ~ l n T  2KT ] 

=f ,o)  n, et T 2KT 2 1 ~  + ~  ' Ot ] (31) 
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The time derivatives in the last equations are evaluated by taking the first- 
order terms in the conservation equations (10)-(12) with the definition (13) 
of the temperature. Thus Eq. (31) is replaced by 

~lf~(~ = f(~ - l  div(nfJ~l)) 

+ \2gT(m~U~2 2)-n--T1 [ T d i v ( ~  nj[~}l)) 

2 2 j~l) 2 ]-1(1) ] + ~ pjC~I).Fj - ~-f div - ~ :E 
J 

mi Ul 1 Div [I(i>; (32) 
KT p ) 

The next three terms in Eq. (29) can be written in the following way, by 
substituting u~ = v + U~: 

C~oi(1) 8A 8A(1) doA(1) ~f(1) 
~-----T + u*'Tr + F* ~u, - dt + Ui" -~ 

+ Gi 8fi(1) 8f~(1) 
" ~Us ~Us Us : E ( 3 3 )  

where G, --- F~ - dov/dt can be expressed in terms of the diffusion forces 
N - - 1  

Gs = ~ [3~j - (pj/p)]Rj - (grad/%~)T (34) 
j = l  

The derivatives off~ m are obtained by differentiating Eq. (27). Use is 
made again of the conservation laws (10)-(12), the definition of temperature 
(13), and the relation 

grad nj = (p/KT)(grad izj)T 
The resulting derivatives off [  ~) are 

doA ~, (oAs ~bs~ 
dt \-b-T Us" grad T + ~ - -  - k =  1 ~ U s ' R ~  

+ - ~  Us~ : E div v 

O/)sk U~ Rk 

8//s ) /I~U~.-~ (grad T) + ~ U , ~  divv + 

N-1 do - o . d  
+ ~ D~U~.at Rk + B~U~ Us. ~ E (35) 

k = l  
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8--r- = \-b--T U,.grad T + ~=~ - -  U~.Rg 

8/~ U ~ ) + ~ -  , , :E gradT 

i8/f~ 
+ ~ T n  U , ' g r a d T + ~ / 3 ~ U ~ R ~ .  ~ = ~  " 

+ ~ U, U~ : E ~ (grad/z~)a. + .4,U,. Div grad T 

N - 1  

+ ~ b,~U,.grad Rk + /~, Grad(U,~ : E) (36) 
/ c = l  

8f (~) / 8if~ 8D~ 
- V .grad + k = 1 ~ U ~ . R k  

+ ~ U, U,. E] U, + A, grad T + ~, /3,~R~ + 2/~,U~. E (37) 
h : = l  

by using Eqs. (11) and (26) and the Gibbs-Duhem equation: Z pk(grad/zk)r 
= grad p. ~is the symmetric part of the tensor E. 

Finally, the solution (27) for the distribution function is introduced 
into the collision integrals to yield 

C(f(1),fj (1)) = C[.4i(Ui" grad T)_~j(Uj.grad T)] 
N - 1  

+ C[Z,(Ucgrad T) ~ Dj~(Uj.R~)] 
k = l  

+ C[A,(Ui. grad ~ o T)Bj(U s U~ : E)] 
cVN- 1 

~-~ )] 
+ C b,~(U,. Rk) jz(Ui-Rz 

I = 1  

CrN~ 1 
+ [k_~l /)~(Ui'Rk)/lj(Ut~ E)] 

~ E)~j(Us.grad T)] + C[B~(U~ U~: 

+ c ~(u?u~ : E) b~(Uj.R0 
[ k =  l 

+ C[B,(U, U, : E)/~y(Uy~ : E)] (38) 

Equations (32)-(38) can be substituted into the right-hand side of Eq. (29) 
to yield an expression for Y~ in terms of the peculiar velocity and the other 
parameters. This expression will be used in Section 4 for the derivation of 
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the phenomenological equations, where it will be convenient to divide Y~ 
into groups of terms according to their dependence on the peculiar velocity" 

~ , =  Y,o+ Y'odd + Y' . . . .  

Y~o = f~r176 div(n,Ul x)) + {m*U'S ,3KT 1)} 

1[ ( ~ )  
• n ~  Tdiv nyLl~ ~ 

N - 1  

+ AiGi.grad T + Gi" Z /)~R~ 
k = l  

f<~ U~. Div Fl a) 
pKT Y{odd - -  

(39) 

(40) 

2 . 0A~ 3 ~Aj OAi \ U~ 
- ~ ( d w v ) ( T - b - ~ + ~  j~nJ-~nj+ UiS~-U-~2)(.gradT) 

n ajff)ilc 2 aJ~ik _ ~iv ~ ~i~({~+ ~ ~ +  ~ ~j~u~..~ t 
+ ~u~.(~ra~ ~-~ ~r~) 

~2 ~ r ) + /3~U~. ~ R k  - E'R~ 
k = J -  

-~ l a L  aX, 
+ (U,.grad T)(U~U~ : E) [ -~  - 2 ~-~21 

+ ~  [U,'(gradtzy)T] PJ �9 ~ ,  (U,U,:~)  

aD~k "U -~ _ N~X 2 ~ ( ,. Rk)(U,U, : E-) 
k = l  

+ 2(U,. G,)(U,U, : E) a/~, -~ + 2/~U~. (G,.E) 

+ /~,U,.grad(U,U~ : E) 

- ~ C d,(U,.grad T) + ~=IZ /7)'k(U"Rz)'/~j(UjUj: 

(41) 
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y~ .... 2 . / ~/~ 3 ~/~ 2 0 / ~ \ ~  ~ 

+ /~U~Ui: \dt - 

+ - ~  UiU~: grad T grad T + ~'  ~ ~ UiUi : Rk grad T 
k = l  

+ ~ ~ KT U{U~ : grad T(grad tLj)r 

j~.N- ~ ~/3~ PJ U~U~ : R~(grad t~j)r 
+ ~ Onj KT 

�9 k = l .  

- 2 ~ (U~U~ : E)(U~U~ : E) + ~,U,U~ : Grad grad T 

+ ~ /)~zU~U~ : Grad Ilk + 2 ~ U~U~ : (grad T)G~ 
/c=1 

+ 2 ~ U,U~ : R~G~ 
k = l  

5 / -1  1 - ~s" {C[ "~'(U''gradT)''~'(Us'gradT) + ~:*Z/3,~(Us.R~) 

N--I N-I 1 
+ C[z=~/),~(U,.Rz),/t,(Uj-grad T ) +  ,=,~ /3,,(Us'R,) 

+ C[/~,(U,U, : ~ ,  Bs(UsUs : E)]} (42) 

4. T H E  P H E N O M E N O L O G I C A L  E Q U A T I O N S  

The first-order phenomenological equations which relate the first-order 
fluxes to the forces are obtained by introducing the solutions (24) for the 
first-order distribution functions into the definitions of the fluxes (7)-(9): 

N - 1  
1 1 (43) j,(1) = -Lqq ~ grad T - ~ Lq~R~ 

h:=l 

where 

Jq* ~ Jq - ~ hjJj, 
J 

N - 1  1 1 
J{~)= - L ~ q ~ g r a d T -  ~ L~Rk~ (43a) 

/z=l  

o . 

rl ~ = - (L/T)E - - 2~E (43b) 
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These equations are identical with those of the macroscopic theory of irre- 
versible thermodynamics. They also agree with the Curie principle, in that the 
fluxes are coupled only with forces of the same tensorial order. 

The phenomenological coefficients L relating the fluxes and forces in the 
phenomenological equations (43) are functionals of the functions A~, D~, 
and B~. They are listed in Appendix A. 

Using the principle of microscopic reversibility, which can be expressed (4) 
in the form 

m(k~jlk~; [u~jl ) = W ( - k ~ ] - k , j ;  [u~j]) (44) 

it can be shoWn that, within the framework of the kinetic theory, the Onsager 
reciprocity relations 

Lq~ =.Lkq; L~k = L~ (45) 

are valid between the first-order phenomenological coefficients even for 
nonlinear irreversible processes and for processes between states not in local 
equilibrium. 

The second-order phenomenological equations can be obtained by 
introducing the solutions for the second-order distribution functions into the 
definitions of the fluxes. This can be done without getting an explicit solution 
for ~<2) but only by using the right-hand side of Eq. (29) (Ref. 2, w The 
fluxes are given by 

jq*<2> = KT ~ ( AiU(Yi dU~ (46) 

N-Ifk%_,l j{2) = KTP..C~ D~kU~YidU~, i = 1 , 2 , . . . , N -  1 
P N  = 

(47) 

j}2) = KTP.___?_.__ | D~kU~ Y~ dU~, i = N 
P -- PN~=I  J 

Y[(~) = KT ~ f B~U~~ dU~ (48) 

Only N - 1 diffusion fluxes are independent, since their sum must vanish. 
Since integrals of odd functions of the components of the velocities U~ 

vanish, the terms of Eq. (40) do not contribute to the fluxes and to the 
pressure tensor, the even terms in Eq. (42) do not contribute to the fluxes, 
and the odd terms in Eq. (41) do not contribute to the pressure tensor. 
Therefore the heat and diffusion fluxes are obtained by introducing (41) 
into (46) and (47), and the pressure tensor by introducing (42) into (48). 
It can be shown also that the first term in Eq. (41) does not contribute to the 
heat flux; furthermore, it does not contribute to the diffusion flux in a binary 
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mixture. <2,a) However, in the general case of a multicomponent system this 
term does make a contribution. It can be rearranged by making use of Eq. 
(43b): 

f (~ {[~ f<~ 17 <~) = 2 U~- +'pKr -----~ UcDiv ~ ~-~ grad T 

~. ~7 0, (grad/x,)r s  7]Div + ~ - f  

The phenomenological equations are given by 
N - 1  

J*(Z) = O~,r(div v) grad T + ~, O~,~(div v)R~ 
/ c = l  

+  rad 

+ | Rk -- s + @r,EgradT.s + E |163 
k=l /c=l 

o _o 

+ ~ On,,E(grad ~j)r-g + OE, Div g (49) 
] 

N - 1  

j~2> = A~v,r(div v) grad T + ~ A~v,~(div v)R~ 
k = l  

/, {4 T) + it,Ti ~ grad T - E.grad 

N-~ /do ) _~ N-- 1 o 

+ ~1A~, ~(~ 1~ - E.R~ + A,T~ grad r.g + ~=12 A,~R~.g 
o o 

+ E A~,j,E(grad ~j)T.s + A~E, Div s i = 1, 2 ,..., N (50) 
Y 

_ . 2 . _  ~ 

I-P = f/~ ~(div v)s + f2~,E - 2s 

o 

+ f~r,T grad Tgrad T 
g - - : l -  o o 

+ ~ f2k,~,Rk grad T + ~ f~r,,j grad T(grad ~j)r 
/~=i J 

N--I N-I o N--I 

+ E ~ f~k, lRkR, + E E ~2k.'~, Rk(grad t~j)r 
k=1 Z=l ] k=l 

o 
N-I o 

+ g)~,~E.E + ~r, GradgradT + ~ gradRkf~k (51) 
k = J .  
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All the phenomenological coefficients appearing in Eqs. (49)-(51) depend on 
the local properties (temperature and composition) and are expressed by 
functionals of the functions A~,/3~, and/~.  They are listed in Appendix A. 

Let us examine the significance of the various terms appearing in the 
second-order phenomenological equations (49)-(5l). The vectorial fluxes of 
heat and diffusion depend on all second-order vectorial combinations of the 
forces (binary products and differentials), with scalar coefficients. The 
symmetric and traceless second-order pressure tensor depends similarly on 
the forces. Thus the Curie principle is obviously valid. It should be noticed 
that additional independent forces appear in the second-order equations, 
namely the gradients of the chemical potentials. These forces do not appear 
independently in the first-order equations. Moreover, all the elements of the 
velocity gradient tensor affect the second-order equations, including the 
trace div v and the antisymmetric part, while only the symmetric traceless 

_2 ~ 

part E appears in the first-order equations. 
The second-order phenomenological equations (49)-(51) demonstrate 

coupling effects between phenomena which are not coupled through the 
first order relations: The velocity gradient tensor affects the heat and diffusion 
fluxes and the pressure tensor depends on the gradients of the temperature 
and the chemical potentials. 

Phenomenological relations between some of the second-order coeffi- 
cients exist, as can be shown by Eqs. (A. 13) and (A. 33); and (A.24) and (A.34): 

0~, = Tf~, (52) 

N - - 1  

= -AN , (53) 
k = l  

Since the Nth component can be chosen arbitrarily, the relation (53) is 
applicable to all the coefficients A~E,. 

As an estimate of the values of the phenomenological coefficients, the 
results for a simple Maxwellian gas are shown. The calculations of the coeffi- 
cients for this case become simpler since the contribution of the collision 
integrals C vanishes, The phenomenological equations for a single Max- 
wellian gas were obtained by Chapman and Cowling (~ 

P-T -4 ~7 ~ (dlv v) grad T 

1 
~ ~ r d~ grad T. E (54) - 3 W~gradp.~ + 3 - - D i v ~  + 3 - - + - ~  

PP P 
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4 (div v)~ + 2 72 

9.  ~ _ _  ~ , . ~ 2  

~ 3T d~ " T=grad r + S E.~ (55) + 3 ~ Grad grad T + pT 2 -~ ~-~ gract ~- 

where the force (grad/~)r was replaced by (l/p) grad p according to the Gibbs- 
Duhem equations. It is clearly seen that the phenomenological relation (52) 
is satisfied. 

5. THE E N T R O P Y ,  E N T R O P Y  FLUX, A N D  E N T R O P Y  S O U R C E  

The entropy can be expanded into series by order of magnitude 

ps = ps (~ + ps (1> + ps (2) + ... (56) 

The values of each order of magnitude can be computed by Eqs. (15) and 
(19). Thus, ps (~ which is local-equilibrium entropy, is given by 

ps (~ = - K ~  f f (~176  - 1) dui (57) 

Obviously, ps (o~ depends on the properties alone (and not on their gradients). 
Hence its character agrees with the classical entropy, e.g., it satisfies the 
Gibbs equation. The first-order entropy vanishes: 

The deviation from local equilibrium is expressed by the second-order 
entropy density: 

ps(2) = 1 K ~ jf(0)[q~l)]2 du~ ~< 0 (59) 

which satisfies the condition that the entropy is maximum in equilibrium. 
The deviation from the state of equilibrium is clearly characterized by the 
gradients of the properties (temperature, composition, and barycentric 
velocity). 

The first- and second-order entropy fluxes are obtained by introducing 
the series from (19) into the definition of Js, (16). It can be shown that J~l) 
and ,1~ 2) are given by 

J~ '  = (l/T) (J(~) - j~/xfl} 1' ) (60) 

j~2) = (1/T)(j~2) _ @. tzj , ~ "  j(2)]] " 7 ' ,  - �89 fu~f(~162 2 dU~ (61) 
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The rate of entropy production can be evaluated by expanding lnf~ and the 
collision integrals in series: 

C(f , f j )  = C(~ + C(1)(f,L. ) + C(2)(f~,J)) (62) 

where 

C(~)(f,L) = ~ C(f~(r'),fF-r')) (63) 
r "  

The following expressions are obtained for the entropy source (~o) vanishes, 
as mentioned above)" 

,r = _ K ~ ~ f r dU~ 

(64) 

When we introduce C(1)(f , f j )  from the Boltzmann equation into (64), the 
first-order entropy source becomes 

1 1 N - 1  1 
~(1) _ T2 J*(2).grad T - -T ~=/=1 ~" j(t)i .R~ - l-V1): E (66) 

Equations (58), (60), and (66) describe the first-order deviation from 
equilibrium, and can be applied to local equilibrium states. These results are 
equivalent to those of the linear macroscopic theory of irreversible thermo- 
dynamics. 

The expression for os (2~ is obtained by introducing the solution (24) 
for r into (59): 

N - - 1  

ps(2) = _ cT(grad T) 2 - ~ cr~Rk.grad T 
k = l  

N - 1  o o 

c~eRj.Rk - cEE.E (67) 
] , k =  1 

where the coefficients c depend on the temperature and composition and are 
listed in Appendix B. The condition ps (2) <~ 0 imposes some relations among 

(65) 
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the coefficients c. These relations are given in a more convenient form if the 
following notations are used: 

Xj = Rj, j =  1 , 2 , . . . , N -  1; 

Thus Eq. (67) reduces to 

where 

XN = grad T (68) 

o o 

ps (2) = - ~  c*-X~.Xj - c~E.E 4 0 (69) 
i,J" 

c,~ = cij, i , j =  1,2 ..... N -  1 
(70) 

and the coefficients c must satisfy the conditions cE /> 0 and the matrix c*. 
is positive definite. These conditions are, indeed, satisfied [as can be seen 
from eqs. (B. 1)-(B.4) of Appendix B] because [r /> 0, 

All the coefficients c appearing in Eq. (67) are related to some of the 
phenomenological coefficients, as can be shown from the appropriate ex- 
pressions in Appendices A and B: 

N - - 1  

T2CT 1| T ~ cT~ = ~ t,T~ ~ A N t , T  
k = l  

N-1 (71) 

T ~ cj~ =AN~j, T ~  1 �9 = ~ t , E  
k = l  

As mentioned above, the Nth component is chosen arbitrarily. Thus, the 
second and third relations in (71) are applicable to all the coefficients A~t,r 
and A~t,j. 

The values of cr and cE for a simple Maxwellian gas are obtained by 
performing the integrations in Eqs. (B.1) and (B.4): 

CT = (45/16)'O2/pT3; CE = ~?2/pT (72) 

The second-order entropy flux is obtained by using Eqs. (24) and (61). 

j~2)= (1/T)(j~2) _ ~ . /~ j j~2) ) -  (FT grad T - i +  ~=11 FkRz.~) (73) 

where the coefficients F ,  and Fj~ are functions of the properties and are given 
in Eqs. (B.5) and (B.6). Comparing these expressions with some of those of  
Appendix A, we establish the following relations 

Fr = -- (1/T~)~T, = -- (1/T 3) | F~ = -- (1/T)a,r (74) 
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and the value of r:~ for a simple Maxwellian gas is found to be 

Fr = 3~72/pT 3 (75) 

It can be seen from Eq. (73) that the deviation of the second-order 
entropy flux from its value for processes between states of local equilibrium 
depends on the thermodynamic forces. It is interesting that whenever the 
barycentric velocity is uniform, the second-order entropy flux reduces to the 
local equilibrium value even for local nonequilibrium states. 

Finally, the second-order entropy source is examined by evaluating the 
three integrals a~2), ~2), and ~g2) on the right-hand side of Eq. (65). The first 
integral is evaluated by a procedure similar to that used in deriving the 
expression (66) for ~(1>. The result is also similar to (66): 

1 1 N-1 
(CA 2 ) -  T2 J*(2).grad T - 7, k__~l J~2)-R~ - ll~(2) : E (76) 

Since the second-order fluxes can be expressed by second-order combinations 
of the forces, the rate of entropy production can be described by third-order 
combinations of the forces. It will be demonstrated below that the other two 
integrals appearing in the expression for e(2) contribute terms of the same 
character. The second integral in Eq. (65) is treated in a similar manner, i.e., 
by introducing C ( ~ ) ( f , f j ) f r o m  the Boltzmann equation. The result is given 
by 

. 2 -o  N - 1  

a~2) = Ar(gra d r)(grad T) : g + ~ Ar~(grad r )Rk:  
/ c = J .  

N - 1  ~ o o 

+ ~ Aj~RjR~:E + A~E:(E.E) (77) 
j , / c  = 1 

where the coefficients A are listed in Appendix B. The values of AT and AE 
for a simple Maxwellian gas are found to be 

AT = (189/16)~2/pT~; Az = 4~72/pT (78) 

The second-order collision integral is written explicitly from Eq. (63) as 
follows : 

C ( 2 ) ( f , f j )  = C(f(2),f~ ~~ + C(f(~ 2>) + C(f(1),fj (1)) (79) 

and is used to evaluate a~c 2). The first two terms of the right-hand side of 
Eq. (79) contribute to cry> an expression identical to a~ 2~. The complete 
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expression for a(c 2) becomes, making use of Eq. (24), 

{ 11_ TIN-~k__--% ~1 17(2) : s  ~(~) = - . . . .  Jq*(2).grad T - ~ J(~2).Rk - 

+ K,~df[-~(U,'gradT) 

N 1  ]( 
+ ~ D,k(UcR~)] C (U,.grad T) 

k = l  

+ 
N1 ] 

Bj(Uj Uj .  E) ~,~([:~.R,),~ o . 
r = l  

+ C[/~,(U,~ : s ~j(U~.grad T) 

+ 

+ 

k = l  

K ~ f B~(U?U~ : s T) 

+ 
N - : I .  

b,k(U,'Rk), ~j(U,.grad T) 
k = l  

N1 ] 
/ = 1  

+ x ~, f B,(u, ov~: E)c[~(v, ov~: E), ~j(v, ov,: E)I dV, (80) 

The second-order entropy production a (2) becomes 

( 1N-1 llT(e) ) = - 2  ~-~1 J*(~).grad T + T ~--1~ J(k~)'Rk + ~ : E 

.%o N-I 2_ 

+ Ar grad Tgrad T: E + ~ Ark(grad T)R~ : 
k = l  

o 
N--I _%o J 

+ ~ AjkRyRk:s + AEE:(E.E) (81) 
j , / r  :1, 



Macroscopic Phenomenological Relations for Nonlinear Processes 309 

where the coefficients A are listed in Appendix B. For a simple Maxwellian 
gas all contributions of the collision integrals vanish and the coefficients 
Ar and AE reduce to ~r and AE: 

A~. = ~,T; A~ = ),E (82) 

and their values are given by (78). 
It should be noticed that a(2~ contains, in addition to the sum of flux- 

force products, a function of the forces which tends to zero as the system 
approaches local equilibrium. 

The differential of ~(2~ with respect to a coupled force yields an expression 
having the same force combination as that of the appropriate flux with 
different values of the coefficients. For example, the terms appearing in 
Eq. (49) for j.(2~ are obtained by differentiating c/2~ with respect to grad T. 
Even though the results obtained here are only qualitative, they suggest a 
way to predict the second-order effects occurring in nonlinear processes which 
are far enough from equilibrium. 

6. D I S C U S S I O N  

One of the assumptions underlying most theories of nonequilibrium 
thermodynamics for irreversible processes ~4~ is that of local equilibrium. 
Since local equilibrium can be assumed only for processes in systems which 
are not too far from equilibrium, these processes can be described by linear 
phenomenological equations relating the thermodynamic fluxes and forces. 
Onsager reciprocity relations which exist between the coefficients of these 
equations are useful in calculating coefficients for the transport equations 
in cases where direct measurements are difficult. ~5~ 

As mentioned above, the results of the first-order approximation of 
kinetic theory are compatible with the linear theory of irreversible thermo- 
dynamics. The first-order fluxes (j,~z~, j~z~ and FP) are linear functions of 
the forces (grad T, Rk and Grad v) and local equilibrium can be assumed. This 
approximation is valid (Ref. 2, Chapter 15) for small values of l/Lz,2, where l 
is the mean free path and L~ and L2 are scale lengths such that the gradients 
of the temperature and the scale mass velocity are T/L1 and V/L2 respectively. 

For larger values of l/Lz,2 the first-order approximation fails to represent 
the processes, and further orders must be taken into account. Such cases 
may be encountered in systems with very low densities, when l becomes 
large, or in shock waves, where Lz.2 become small. In these systems, the 
assumption of local equilibrium is no longer valid. In fact, it was shown here 
that some relations between properties are not compatible with equilibrium 
thermodynamics. For example, the entropy now also depends on the tem- 
perature gradient [see Eqs. (24) and (59)]. 



310 A. Shavit and Y. Zvirin 

In the present work, the second-order constitutive equations relating 
second-order fluxes to second-order forces were derived for multicomponents 
systems. Several relations between the transport coefficients in these equations 
were developed. Specifically, the relations between the second-order entropy, 
the entropy source, the entropy flux, and the thermodynamic fluxes and 
forces were established. 

It should be also noted (2~ that when the ratios l/L~.2 approach unity, 
first- and second-order approximations may not be sufficient to describe the 
process, and additional orders may be required. Thus the range of utility of 
second-order along with first-order terms is limited to intermediate values of 
l/L~,2:0 << l/L~,2 << 1. At the lower limit, first-order terms are sufficient, 
while at the higher limit, higher-order terms may be required. 

A P P E N D I X  A.  P H E N O M E N O L O G I C A L  C O E F F I C I E N T S  

The first-order phenomenological coefficients L appearing in Eqs. (43) 
and (43a, b) are obtained by introducing the solution for (}~ into the de- 
finitions of the fluxes. Since the range of the integrals is over all possible 
values of the velocities between -oe and +0% integrals of odd functions of 
the velocities vanish. It is noted that A~, D~k, and B~ are even functions of the 
velocities because they depend on their absolute values. Use is also made 
of the integral theorems proved by Chapman and Cowling. (2~ 

The coefficients Lqq and Lq~ appearing in Eq. (43) are obtained by intro- 
ducing (24) into (7) and (8) and also using (14): 

{. 
= +KT 2 ~ Jf~(~ - ~]U~ 2 dU~ (A.1) Lqq 

= �89176 - ~IU, z dU, (A.2) Lq~ 

The coefficients Liq and L~ appearing in Eq. (43a) are similarly derived 
from Eqs. (24) and (7): 

1,~ T (~(~ U 2 L~q = X"'~ jJ~ ~ ~ dU~ (A.3) 

L~ = �89 f~<~ 2 dU~ (A.4) 

Finally, the coefficient ~ is obtained from Eqs. (9) and (24): 

~ = (1/15) ~ rn~ f f(~ dU~ (A.5) 
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The second-order phenomenological equations are derived by intro- 
ducing the right-hand side of Eq. (29) into Eqs. (46)-(48). The second-order 
phenomenological coefficients appearing in the resulting phenomenological 
equations (49)-(51) are obtained in a manner similar to that used to deter- 
mine the first-order coefficients. 

The second-order heat flux a.(2) is derived by introducing (40) into (46). 
The first term in Eq. (41) does not contribute to the heat flux; the other 
terms lead to the phenomenological coefficients appearing in Eq. (49). The 
following expressions are obtaified for the phenomenological coefficients 0:  

2 KT ~ P / OA~ 3 O~ r = ~ ~ ~, ~ + U~ ~ )  U~ 2 dU~ (A.6) 

@,.k = ~ KT ~ A, T + -~ . ns ~ + U~ 2 ~-~2] Ui 2 dU, (A.7) 

o~,~ = -~ KT~ f A,5~u? au, (A.8) 

Ot,~= - 1 K T ~ f A , D , ~ U , 2 d U ~  (A.9) 

= jA,~- W - 2  U,'dU, 

+ K T  A~U~ {C[A~(U~.grad T), Bj(UjUj: E)] 
i J 

+ C [/~(U~U~ �9 E), A~(Uj. grad T)]} dU~ (A. 10) 

2 2 a/~ '~ 

2 2 a /3 ,~1 .  
5 U, ~-U-~2]u, dU~ 

o 

+ c [L(u,u~: ~), b~(uj.  R,3]} dU~ (A. 11) 

On,,z = - g  KT . A~ 3,j ~ + -~ U~2 ~-~2 ] 3 -K---~ U,2 onj j U~2 dU, (A.12) 

2 ~ f  dU, | = - ~  KT A,B,U~ 4 (A.13) 
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where the tilde above the integral denotes the coefficient of the appropriate 
force combination appearing in the respective integral. 

The phenomenological coefficients appearing in Eq. (50) for the diffusion 
fluxes are established in a similar way, by introducing (41) into (47). It is 
noted that the first term in Eq. (41) does have a contribution. 

N-1 

N-1 
Au,v = -�89 ~ ( D,m-.4,U, ~ dU, (1.16) 

m-~-'Z J 

A,t,~ = -iKT(p/pN)m~ D~,~b~U~ 2 dU, = A~t,~ (A.17) 

A~ E 2 m, 0V u-  1 . -3pN-b-~=lfD,mf(~ 2dU, 

15 = 

+ KT ~N-Ip~,~J,f D,mU, ~., {C[.4,(U,.graOT),~XUjUj:E) 

+ C [/~,(U,U, : s ~j(Uj.grad T)]} dU, (A. 18) 
2 P N- 1 , 2 ~Bi 

AilcE = ,  --- f iST--  ,9 PN m=lJ  ~ In im[(  ~'k --~)(J~'  "J l--5 U'2~i2J 

2 u? eb,~] 
5 ~U-~2] 0`2 dU, 

N--l ~ _%0 

PN = i 1 

o_t 

+ C [/~,(U,U, :E), Djk(Uj" R~)]} dU, (A. 19) 
N--J. 

2 KT p = ( D [re'f'~ a~7 

2 a~,] lp ,  u7~ 
+ 8,j /}, + ~ U, 2 ~---U-~2] + 3 ~ ~--~nj] U,: dU, (A.20) 

2 K T ~ _ ~ N ~ ( D [ m , f  '~ 1 ) A,~. = - ~  ,,,=~J "~I--~-T ~/ + 5 o'w*2 W'~dU' (A.21) 
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Equations (A.14)-(A.21) are for i = 1, 2 .... , N - 1; the coefficients for 
the Nth flux (i = N) are obtained by replacing p/pN by -p / (p  - pN) [see Eq. 
(47)]. Since the sum of all the fluxes vanishes, ~j Jj = 0, the sum over i of 
every kind of coefficient A vanishes, too, e.g., ~ A~v,T = 0. This condition 
leads to the following relation: 

(wN-1 /Of) -- f)N ) f)_EN 
P \m'~"--1 Am f)N P Aun = --Aivn (A.22) 

Performing the operation indicated in Eq. (A.22) on Eqs. (A. 16) and (A.21) 
for A,,r and A~w, the coefficients Am,z, and ANE, are found to be 

, 1 N - I  t .  

ANW = (2/15)KT D,mJ~,U~ ~: dU, (A.24) 
i m=l 

Finally, the phenomenological coefficients appearing in Eq. (51) for the 
second-order pressure tensor are obtained by introducing (42) into Eq. (48): 

4 K T ~  r [ OJB, 3 
f~,E = ~  ~ ~ +  U~:yU-Tj2 ] ~ dU, (A.25) 

~),., = -(2/15)KT ~ f B,.~,U,' dU, (A.26) 

a ~ T  = - ( 2 / 1 5 ) K V E  f e,(ax,/or)u: dU, 

+ Kr t o B~U~ U~C [&(U~. grad T), A~(Uj. grad T)] dU~ (A.27) 
- - ' J I  

n . , .  = - i 3  . J L T V  - g-gT'J ~ dU, 

+ KT~fB,Ui~ 
+ C [D,,(U,.R,), A,(U,. grad r)]} dU, (A.28) 

2 f ( p ,  a ~  28~j a ~ ]  .OT,,~, = - -17KT~ B~ KTOnj ~--~2] U~'dU~ (A.29) 

' - 15 . K-T On~ 28~ ~ - - ~ )  U~ ~ dUe (A.30)  
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~ , ~  = --~ 

+ K T ~ f B , u , ~  C[/5,,(U,'R,), Djz(Uj'R3] dU, 

16 KT ~ r ~ 

2 i  2 0- -" + KT B,U,~ C [/~,(U,U, :E),/~j(U,Uj : E)] dU, 

f2 r, = - (2/151KT ~ 'B,A,U," flU, 
i 

(. 

Y2 e, = -(2/15)KT ~ i B,b,,U," dU, 
i 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

A P P E N D I X  B. COEFF IC IENTS A P P E A R I N G  IN THE 
EXPRESSIONS FOR THE S E C O N D - O R D E R  ENTROPY,  
E N T R O P Y  FLUX, A N D  E N T R O P Y  S O U R C E S  

The second-order entropy ps (2) is obtained by introducing (24) into (59). 
it is again noted that integrals of odd functions of the velocity U~ vanish, 
and the integral theorems mentioned in Appendix A are used again. The 
coefficients c appearing in Eq. (67) are found to be given by the following 
functionals: 

eT, = �89 ~ f fi(~ dU, (B.2) 

1K f = (B.3) c~k = ~ ~ f(~ 2 flU~; csk cki 
J 

c~ = (1/15)K . fy,,o>e,,u,, dtJ, (B.4)  
t 

The coefficients P appearing in the expression (73) for the second-order 
entropy flux j~2> are obtained after introducing (24) into (61):  

FT = (2~15)(KIT 2) ~ f A,B,f(~ ~ dU, (B.5) 

rk = (2/15)K ~. ( D,~B,f(~ 4 dU, (B.6) 
-7" d 
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The coefficients A appearing in Eq. (77) are obtained after introducing 
the solution for r from (24) and the first-order terms for C(1)(f,fj) from 
the Boltzmann equation into the second integral on the right-hand side of 
Eq. (65): 

- 15 T 2 k 2KT f(~ 4 dU~ 

+ 131 ~1 ~ mi ff~(~ U~ 4 dU, (B.7) 

Ark -- 15 T 2 k 2KT f~(~ 4 dU~ 

+2.~,l ~m~ff~r _ s 

21 f + --~ ~-~ ~ m, f(~ dU, (B.8) 

2 1  m, ff(o)B~DijU, a (3~ El) Aj~ - 15 T ,~. dU~ - 

+ l l ~ m~ f f(~ dU~ (B.9) 

f AE 105 T . m~ f~(~ dU~ (B.10) 

The coefficients A appearing in Eq. (81) are obtained from Eqs. (77) 
and (80): 

~ 

A~--  A~ + K~f-~(U,.gradT) 

• {C[Z,(U~.grad T),/~j(Uj~ : E)] 

+ C[/~(U~~ : E), .4j(Uj.grad T)]} dU~ 

+ B,(U,~ : E) 

• C[A,(U,.grad T), A~(Us.grad T)] dU, (B.11) 
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Ar~= ar~ + K ~  |~-~2 (U,.grad T) 
- - - j . t i , y  

x {C[/5~(U~.R~),/}y(Uj~ : E)] 

~ E), [)j~(Uj.Rk)]} dU, + C[B~(U, Ui : 

K ~ f Di~(U~.R~){C[~i(U~.grad T), ~ ~ B~(Us Us : E)I + - ~  . 

o E), As(Uj-grad T)]} dU~ (B.12) + C[B~(Ui U~ : 

Az~ = a,~ + Ki~.j f Di~(Ui" R~)C[b~(Ui'R~), ]~j(Uj~ : E)] dU~ 

+ K~ ;B,(U,~ : E)C[/},,(U,.R,), bjk(Us.R,0] dU, (B.13) 

A~ = h~ + K ~  f B,(U,~ : E)C[/~,(U,~ :E), ~y(Us~ :E)] dU, 
i , i  (B.14) 
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